
Abstract-- This paper introduces an approach for non-
intrusive SLA validation based on sampling techniques. Suitable 
sampling methods are compared with regard to sampling effort and 
achievable accuracy. Mathematical modeling is supplemented by 
tests with traffic traces from distributed online gaming with 
multiple players in Berlin, Madrid and Kawasaki. 
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I. NON-INTRUSIVE QUALITY VALIDATION FOR 
STATISTICAL SLAS 

 
Non-intrusive measurements provide an elegant way 

for investigating the quality of existing flows without 
burdening the network with test traffic. Based on 
existing customer traffic, they generate exactly the 
quality statements required for the validation of 
guarantees in service level agreements (SLAs). 
Nevertheless, increasing data rates make it costly and 
sometimes impossible to provide exact quality 
statements for all observed packets. Furthermore, costs 
and required resources for the SLA validation should be 
limited to a small fraction of the service provisioning 
costs itself.  

Therefore we propose to formulate statistical SLAs 
that are based on quality estimations, instead of exact 
measurements. Many applications do not require exact 
values for quality parameters and can tolerate a few 
packets that violate the SLA. Furthermore, reduced 
measurement costs allow providers to offer services at 
lower prices, giving an incentive for customers to use 
statistical SLAs. Additionally, the expected accuracy, 
which should be included in the SLA, could be adapted 
to customers’ demands. 

A comparison of passive and active measurements and 
approaches for passive multipoint measurements can be 
found in [GrDM98] and [ZsZC01]. Sampling methods 
for investigations of different metrics have been 
presented in [ClPB93], [DuGr00], [DuLT02] and 
[ChPZ02]. Standardization of schemes is done within the 
IETF [PSAMP].  

In this paper we introduce an approach for efficient 
non-intrusive SLA validation based on sampling. We 
model the SLA validation problem as estimation of the 
percentage of packets that violate the SLA and use one-
way delay as example metric. We investigate the 
tradeoff between sampling effort and achievable 
accuracy and discuss solutions for sampling 
synchronization for multipoint measurements. Empirical 
tests with traces from distributed online gaming 
supplement the theoretical results. 

II. SAMPLING TECHNIQUES 

A. Classification of Sampling Schemes 
 
In accordance to PSAMP terminology introduced in 

[ZsMR04] and [Duff04] we distinguish random 
sampling, where packet selection is based on random 
functions and systematic sampling, based on 
deterministic functions. The selection decision can 
depend on packet arrival time (time-based), packet count 
(count-based) or parts of the packet content (content-
based). Table 1 gives an overview of the categorization 
and a short description of the basic schemes.  

Figure 1 shows a classification of schemes with regard 
to the sampling effort and required traffic information. 
Systematic time-based sampling requires no traffic 
information and is very simple to realize by periodically 
enabling/disabling the packet capturing function. The 
effort for systematic count-based sampling is equally 
small, but the scheme requires packet counters. Filtering 
needs access to packet content. Probabilistic and n-out-
of-N sampling require the generation of random numbers 
and therefore require a higher effort. n-out-of-N requires 
slightly more effort due to the maintenance of random 
number lists. Non-uniform probabilistic schemes require 
functions for probability calculation based on arrival 
time, packet count or content. Since packet counters are 
widely available in routers and other network devices, 
we concentrate on count- and content-based schemes. 
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 Scheme Description 

n-out-of-N Random selection of n elements out of a population of N 
Uniform probabilistic Each packet selected with probability p  

R
an

do
m

  

Non-uniform probabilistic (probabilistic 
time-, count- or content-based) 

Like simple probabilistic, but selection probability depends 
on temporal or spatial packet position or packet content 

Systematic count-based Deterministic selection based on the spatial packet position  
Systematic time-based Deterministic selection based on the packet arrival time 

Sy
st

em
. 

Filtering (systematic content-based)  Deterministic selection based on packet content (includes 
hash-based methods) 

Table 1: Description of Sampling Schemes 

B. Sampling for Multipoint Measurements  

Sampling for multipoint measurements must ensure 
that the same packets are captured at all involved 
measurement points. A synchronization of sampling 
processes can be realized by hash-based methods as 
proposed in [DuGr00]. This method allows 
deployment of sampling at all observation points, but 
provides only a pseudo random selection. 
Furthermore, it requires packet processing, which is 
costly compared to other methods.  

A further approach is the use of a heterogeneous 
measurement infrastructure. A few high performance 
measurement points are positioned close to servers, 
provide full measurements and serve as collectors. 
Less sophisticated measurement devices based on 
sampling are used at client sides and transfer results to 
the collector [Zseb02]. This allows the applicability of 
arbitrary sampling schemes, i.e. also very cost 
efficient schemes. Since full measurements are 
required at a few points, this approach is only cost 
efficient, in scenarios where many users communicate 
with a few servers. 

III. MATHEMATICAL MODELS 

A. Proportion vs. Percentile Estimation 

The goal of SLA validation is to check whether 
packets in a data stream are conformant to the QoS 
guarantees given in an SLA. An estimation of the 
whole distribution of the metric of interest (here 
delay) is difficult and contains much more information 
than needed in this context. The estimation of mean 
and standard deviation of the delay values can give 
first insights about the quality situation for the 
application, but are inadequate to validate the 
conformance to an SLA.  

Percentiles of the delay distribution provide 
valuable parameters to assess the general network 
situation [ChMC03]. E.g. the 95th percentile provides 
the information that 95% of all delays are below the 
percentile value. But if the 95th percentile lies above 
the delay threshold in the SLA, we get no idea what 
percentage of packets really violated the contract. 

Therefore we propose a different approach. Instead 
of estimating percentiles, we estimate the percentage 
of packets that violate the contract. With this we 
model the validation task as an estimation of the 
proportion of packets that exceed a given delay limit. 
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Figure 1: Overview of Sampling Schemes 



 
A packet with delay d > dmax is considered as a 

violator (hit,1), packets with delay d ≤  dmax are 
considered as conformant (no hit, 0). Then we can 
model the number of non-conformant packets in a 
measurement interval as binomial distributed random 
variable. 

B. Estimation Accuracy 

An assessment of the estimation quality is done by 
looking at the distribution of the estimate (i.e. how the 
estimate would evolve if we perform infinite sampling 
runs). We need to consider two important quality 
criteria: The bias quantifies how far the mean of all 
estimates (for infinite sampling runs) lies from the 
exact value and is measured by the expectation. The 
precision quantifies how the estimates from multiple 
experiments scatter around the mean and is measured 
by the variance. For an easier comparison of schemes 
we use the relative standard error. 
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Notation Description 
N Number of packets in population 

(measurement interval) 
nR Real sample size:  real number of packets 

in sample 
nT Target sample size: number of packets in 

sample that is aimed at (fixed value) 
M Number of violators in measurement 

interval 
m Number of violators in sample 
P=M/N Violator proportion in measurement 

interval  

RP̂ m n=  Estimated violator proportion from 
sample 

fR= nR/N Real sample fraction 
fT= nT/N Target sample fraction (equals the 

selection probability used in probabilistic 
sampling) 

K= N/ nT Sample period for systematic sampling 
(rounded off in experiments) 

Table 2: Notation 
 

C. n-out-of-N Sampling 

n-out-of-N sampling selects exactly n packets out of 
the population of the N packets observed in the 
measurement interval.  

We can estimate the number of violators in the 
measurement interval from the number of violators in 
the sample as follows: 
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The random variable xi denotes the conformance of 
the sampled packets to the SLA (xi = 0 if packet delay 
d ≤  dmax  and  xi = 1 if d > dmax). xi can be modelled as 
Bernoulli distributed random variable (RV) with 
probability of success P=M/N. The number of 
violators m in the sample can be modelled as number 
of hits in an experiment with nT trials. Since we 
cannot select a packet that we once selected again, we 
have to consider a selection without replacement, i.e. 
m can be considered as RV with a hyper geometric 
distribution. The proportion P of violators in the 
measurement interval is estimated by the proportion of 
violators in sample. 
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We get an unbiased estimate P̂  (see appendix) with 
the following variance:  
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With N-1≈N we get the following relative standard 
error (see derivation in appendix (section Error! 
Reference source not found.)): 
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The estimation accuracy depends on the sample 
fraction and on the real violator proportion. The real 
violator proportion is unknown and has to be 
approximated from the sample or replaced by worst 
case parameters in order to make an accuracy 
prediction in advance. For small sample fraction (fT< 
5%), we can neglect the finite population correction 
and get the following simplified formula:  
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D. Probabilistic Sampling 

Probabilistic sampling makes a selection decision 
per packet. That means each packet is selected with a 
given probability p regardless of the fact how many 
packets already have been selected before. The real 
sample size nR varies for each run, and usually differs 
from the target sample size nT  (nR ≠ nT). In [DuLT02] 
the number of packets that belong to a specific flow is 
estimated by modelling the probabilistic selection 
process with a Bernoulli distributed random variable 

iω  with success probability fT=nT/N. The variability 
of nR is neglected. iω  is defined to be 1 if the packet 
is selected and 0 if the packet is not selected. If we 
consider the packet property “violate SLA” instead of 
“belong to flow f”, we can apply the same model and 
get the following estimate for the number of 
violators1.  
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We get an unbiased estimate and calculate the 
variance and standard error for the estimate P̂  in 
accordance to [DuLT02] as follows (see appendix): 
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E. Systematic Sampling  

For independent packet delays we can apply the n-
out-of-N model. But if correlations occur, the 
systematic selection process can interfere with 
periodicities in the packet sequence. We may get a 
non-representative accumulation of packets with 
specific properties (e.g. packets with high delays) in 
the sample and with this a biased estimation. The 
nature of this bias heavily depends on the specific 
traffic mix. Therefore we cannot derive a generic 
model (valid for arbitrary traces) as for random 
methods.  

                                                      
1 Please note that for a consistent notation 

throughout this document we use a different notation 
than [DuLT02]. 

F. Filtering and Hash-based Sampling 

Filtering (systematic content-based sampling) is a 
deterministic function on the packet content. It is quite 
likely to introduce a bias due to interferences of the 
traffic mix structure with the deterministic selection 
process. A special form of filtering is the hash-based 
selection [DuGr00], which emulates probabilistic 
sampling. A deterministic function on the packet 
content is used to calculate a hash value. If the hash 
value falls in a specific range the packet is selected. If 
sufficient randomness is achieved (see [DuGr00]), we 
can apply the probabilistic sampling model. 

G. Comparison of Schemes 

From the mathematical models we observe that the 
relative standard error for n-out-of-N sampling is 
equal to the standard error for probabilistic sampling 
multiplied by a factor (1 )− P . 

 
 (1 )= − ⋅nofN probStdErr P StdErr           (10) 

Since 0 (1 ) 1≤ − ≤P , we can deduce that n-out-of-N 
sampling provides a smaller standard error and with 
this a better accuracy than probabilistic sampling. 
Nevertheless, the difference depends on the violator 
proportions in the measurement interval and can get 
very small if there are only few violators.  

Figure 32 and Figure 3 show the theoretical 
standard error for n-out-of-N (approximated and exact 
formula) and probabilistic sampling for a violator 
proportion of P=0.2 and P=0.8. It can be seen that for 
higher violator proportions the difference between the 
schemes increases. It also can be observed how the 
approximated n-out-of-N model diverges from the 
exact model for large sample fractions. 
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Figure 2: Theoretical Standard Error over Sample 

Fraction (for P=0.2) 
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Figure 3: Theoretical Standard Error over Sample 

Fraction (for P=0.8) 

IV. EXPERIMENTS  

A. Trace Collection 
 
The traces were collected during a demo event for 

IPv6 measurement software developed in the 6QM 
project [6QM]. Players in Berlin, Madrid and 
Kawasaki (Japan) participated in a distributed gaming 
event with Quake2 over IPv6. The involved networks 
were WIDE (Japan), Euro6IX(Spain) and 6WIN 
(Germany). GPS synchronized measurement boxes 
were installed at all participating locations to perform 
passive one-way delay measurements. We collected 6 
traces with up to 139,756 packets per trace between 
the server in Berlin and clients in Berlin, Madrid and 
Kawasaki. 

B. Empirical Results 
 
We split the traces into measurement intervals of 

N=10,000 packets each and simulated 10,000 sample 
runs for each scheme. We repeated the experiments 
for different sample fractions from 1 to 100 %. The 
diagrams show the relative standard error over the 
target sample fraction, which may differ from the real 
sample fraction for probabilistic and systematic 
sampling.  

Figure 4 and Figure 5 compare the theoretical with 
the empirical results from the Berlin-Kawasaki trace 
for n-out-of-N and probabilistic sampling With a 
threshold of 170.00 ms we get a violator proportion 
P=0.144. Empirical results for both random schemes 
are very close to the model. Further experiments with 
the other traces and parameter settings showed the 
same compliance to the models. 

Figure 7 and shows the empirical results for n-out-
of-N, probabilistic and systematic sampling for 
violator proportions P=0.144 and P= 0.913 (realized 
by a lower threshold). For systematic sampling the 
start point was chosen randomly to get a variation of 

 
Figure 4: Comparison Empirical Results with 

Theoretical Model (n-out-of-N) 
 

 
Figure 5: Comparison Empirical Results with 

Theoretical Model (probabilistic) 
 

the estimates for different runs. We round off K=N/n, 
i.e. we get a higher real sample size if K is no integer. 

As expected the difference between n-out-of-N and 
probabilistic sampling increases for larger violator 
proportions. For P=0.913 the n-out-of-N shows a 
much better performance than probabilistic sampling. 
The results for systematic sampling for P=0.144 
cannot be matched to any model. Correlations in the 
trace lead to a traffic-dependent bias and therefore 
unpredictable accuracy for systematic methods. Above 
a target sampling fraction of 50% the standard error 
for systematic sampling is 0, because K is 1, and the 
real sample fraction is 100% (all packets captured). 
For larger proportions (P=0.913) one can see that 
systematic sampling is closer to n-out-of-N sampling 
than to probabilistic sampling.  



 

 
Figure 6: Empirical Results from n-out-of-N, 

Probabilistic and Systematic Sampling (P=0.144) 
 

 
Figure 7: Empirical Results from n-out-of-N, 

Probabilistic and Systematic Sampling (P=0.913) 
 
 

V. CONCLUSION 

We compared different sampling schemes for the 
use in non-intrusive SLA validation. From the 
investigated schemes n-out-of-N sampling requires the 
most effort and also provides the best accuracy. 
Probabilistic sampling requires a little bit less effort 
and also performs worse for traces with many SLA 
violators. Nevertheless, for nearly conformant traffic 
mixes the difference to n-out-of-N is rather marginal. 
Systematic sampling can be realized with very little 
effort. In our experiments the accuracy was at least in 
the same range as for the random methods. 

Nevertheless, the accuracy of systematic sampling is 
trace dependent and cannot be predicted by a generic 
model. Therefore those results cannot be generalized 
for other traces. Hash-based approaches are useful for 
synchronization of sampling processes in multipoint 
measurements and can be modeled by probabilistic 
sampling if sufficient randomness of the selection is 
ensured. Nevertheless, it requires processing of the 
packet content and an unbiased selection cannot be 
ensured for arbitrary traffic traces. 
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VIII. APPENDIX 

A. n-out-of-N Sampling  
Expectation and variance of hyper geometric random 
variable m:  
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 P̂ provides an  unbiased estimate 

 
Variance of estimate P̂ : 
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standard error can be derived as follows:  
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For small sample fraction (fT< 5%), we can assume a 
binomial distribution and we can derive the following 
standard error:  
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So for small sample fraction (fT< 5%), the finite 
population correction can be neglected. 



 

B. Probabilistic Sampling  
 
Estimate for the number of violators:    
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Expectation of the estimate M̂  in accordance to 
[DuLT02]: 
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 M̂ provides an  unbiased estimate 

 
Variance of the estimate M̂  in accordance to 
[DuLT02]: 
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Derivation of expectation and variance for estimate P̂ : 
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Derivation of relative standard error: 
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